Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

3,3'-Dihydroxy-5,5,5',5'-tetramethyl-2,2'-thiodicyclohex-2-en-1-one

Fumio Imashiro

Division of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
Correspondence e-mail: imashiro@kuchem.kyoto-u.ac.jp

Received 28 March 2006
Accepted 19 May 2006
Online 23 June 2006
Molecules of the title compound, $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~S}$, have twofold crystallographic symmetry and are stabilized by strong intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and very weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming layers normal to the c axis. The molecular structure is compared with those of the Se - and CH_{2}-bridged analogues.

Comment

When two dimedone (5,5-dimethylcylohexane-1,3-dione) molecules are bridged at their 2-positions with X (where $X=$ Se, S or CH_{2}), they are bound with strong intramolecular $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds in enol forms, (I a)-(I $c)$. It is of interest to determine how their molecular structures and hydrogen bonds depend on the bridge X atoms.

(Ia) $X=\mathrm{Sc}$
(Ib) $X=\mathrm{S}$
(Ic) $X=\mathrm{CH}_{2}$
The crystal structures of (I a) (Kivekäs \& Laitalainen, 1983) and (Ic) (Low et al., 2003; Bolte \& Scholtyssik, 1997) are reported to be similar to each other, even though the space group for ($\mathrm{I} a$) is $P 4_{2} b c$ with $Z=4$ and that for (Ic) is Pccn with $Z=8$. The space group of the title compound, (Ib) (Fig. 1 and Table 1), is found to be $P 4_{2} b c$, with slightly smaller lattice constants a and c than those for ($\mathrm{I} a$). Although the crystal structures of seven derivatives of structure (Ic) substituted at the methylene bridge with p-substituted phenyl groups have been determined by Bolte et al. $(1997,2001)$, their molecular structures are not further mentioned here to ensure focus on the structural differences due to unsubstituted bridge X atoms. The mean values for the structure and ring puckering parameters (Cremer \& Pople, 1975; Taylor, 1980) of (Ic) are used here unless otherwise specified, since the structures of the two independent molecules in the crystal of (Ic) are similar to each other.

The $\mathrm{C}-X$ bond length decreases from 1.916 (10) \AA for (I a) to 1.763 (2) \AA for ($\mathrm{I} b$) to 1.515 (1) \AA for ($\mathrm{I} c$), while the $\mathrm{C}-$ $X-\mathrm{C}$ bond angle increases from $100.9(4)^{\circ}$ for ($\mathrm{I} a$) to $104.8(2)^{\circ}$ for ($\mathrm{I} b$) to 116.1 (1) ${ }^{\circ}$ for ($\left.\mathrm{I} c\right)$. The $\mathrm{C}-X$ bond lengths are approximately correlated with the covalent radii of $X\left(1.22,1.02\right.$ and $0.68 \AA$ for $X=\mathrm{Se}, \mathrm{S}$ and CH_{2}, respectively; Cambridge Crystallographic Data Center, 2006). The intramolecular O . O O hydrogen-bond distance of 2.732 (2) \AA for ($\mathrm{I} b$) (Table 2) is also between the corresponding distances of 2.857 (12) \AA for ($\mathrm{I} a$) and 2.641 (1) \AA for ($\mathrm{I} c$).

The ring-puckering parameters $\left[\theta=61.6(3)^{\circ}\right.$ and $\varphi_{2}=$ $\left.-2.4(4)^{\circ}\right]$ for the $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$ sequence of the cyclohexenone ring in ($\mathrm{I} b$) are indicative of conformations somewhere between half-boat and envelope for the cyclohexenone ring as observed for $(\mathrm{I} a)\left[\theta=60.9(17)^{\circ}\right.$ and $\varphi_{2}=$ $\left.-3.6(19)^{\circ}\right]$ and (Ic) $\left[\theta=59.0(3)^{\circ}\right.$ and $\varphi_{2}=178.5(4)^{\circ} ; \theta=$ $119.8(3)^{\circ}$ and $\left.\varphi_{2}=0.9(6)^{\circ}\right]$. It is interesting that the total puckering amplitude Q decreases slightly but significantly from ($\mathrm{I} a$) to (Ic) $[Q=0.490$ (15), 0.476 (2) and 0.458 (2) \AA for (Ia)-(Ic), respectively]. The average distance of atoms O1 and O 2 from the mean plane of the cyclohexenone ring also decreases from $0.121 \AA$ for ($\mathrm{I} a$) to $0.099 \AA$ for ($\mathrm{I} b$) to $0.046 \AA$ for (Ic). The observed dependence of Q on the bridge X atoms could therefore be ascribed to the intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, which bring about deformation of the cyclohexenone ring by shrinking of the $\mathrm{O} 1 \cdots \mathrm{O} 2^{\prime}$ (and

Figure 1

A perspective view of ($\mathrm{I} b$), showing the non- H (and H 1) atom-numbering scheme and 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii. Primed atoms are at the symmetry position $(1-x,-y, z)$.

Figure 2

A stereoview of the molecular packing for (I b), with intra- and intermolecular hydrogen bonds shown as dashed lines (see Table 2). The non-H atoms of one molecule involved in the hydrogen bonding are labeled. Atoms are drawn as circles of arbitrary radii.
$\mathrm{O} 2 \cdots \mathrm{O} 1^{\prime}$) distances. The bond distances along the $\mathrm{O} 1-\mathrm{C} 1-$ $\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 2$ sequence in ($\mathrm{I} b$) suggest some π conjugation, as reported for ($\mathrm{I} a$) and ($\mathrm{I} c$), although the degrees of the bond alternation in ($\mathrm{I} a)-(\mathrm{I} c)$ do not seem to be systematic.

In the crystal structures of (Ia)-(Ic), mirror-image molecules are stacked along the individual C_{2} axes passing through the bridge atoms, forming column structures. The $\mathrm{C}-$ $X-\mathrm{C}$ planes of the upper and lower molecules in these columns relate by ca 60°, as displayed in Fig. 2 for (Ib). There are very weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Desiraju \& Steiner, 1999) or contacts involving methyl H atoms between columns in the crystal structure of (Ib) (Fig. 2 and Table 2), forming layers of molecules normal to c. Similar weak contacts could also be identified in the crystal structures of ($\mathrm{I} a$) and (Ic), although Low et al. (2003) doubted their structural significance.

Experimental

Compound (Ib) was prepared from dimedone and sulfur chloride, according to the procedure of Gompper et al. (1964), and isolated through a silica gel column. Suitable crystals were obtained by evaporation of a benzene-methanol solution (m.p. 504-507 K).

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~S}$
$M_{r}=310.41$
Tetragonal, $P 4_{2} b c$
$a=13.3426(14) \AA$
$c=9.049$ (2) \AA
$V=1610.9(4) \AA^{3}$
$Z=4$
Data collection
Rigaku AFC-7S diffractometer $\omega-2 \theta$ scans
Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.815, T_{\text {max }}=0.959$
1251 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.097$
$S=1.07$
1251 reflections
102 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& D_{x}=1.280 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.21 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Rectangular, colorless } \\
& 1.00 \times 0.40 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

1251 independent reflections
1004 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=30.0^{\circ}$
3 standard reflections
every 150 reflections intensity decay: 0.4%

$$
\begin{aligned}
& \begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0547 P)^{2}\right. \\
& \quad+0.1022 P] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.29 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.19 \mathrm{e}^{-3} \AA^{-3} \\
& \text { Extinction correction: } S H E L X L 97 \\
& \text { Extinction coefficient: } 0.014(2) \\
& \text { Absolute structure: Flack }(1983) \\
& \text { Flack parameter: }-0.02(17)
\end{aligned}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

S1-C2	$1.763(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.425(3)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.253(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.381(3)$
$\mathrm{O} 2-\mathrm{C} 3$	$1.300(2)$		
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-167.6(3)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 2$	$168.6(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{S} 1$	$10.6(3)$	$\mathrm{S} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 2$	$-9.7(3)$

Table 2
Hydrogen-bond and short-contact geometry ($\AA^{\circ},^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.72 (4)	2.04 (4)	2.732 (2)	163 (5)
$\mathrm{C} 4-\mathrm{H} 2 \cdots \mathrm{O} 1^{\text {ii }}$	0.97	2.62	3.521 (3)	154
$\mathrm{C} 7-\mathrm{H} 8 \cdots \mathrm{O} 1^{\text {ii }}$	0.96	2.65	3.524 (3)	152

Symmetry codes: (i) $-x+1,-y, z$; (ii) $-x+\frac{3}{2}, y+\frac{1}{2}, z$.

All H atoms were located in a difference Fourier synthesis. C -bound H atoms were refined with restrained isotropic displacement parameters $\left[U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)\right.$ or $\left.1.2 U_{\text {eq }}\left(\mathrm{C}_{\text {methylene }}\right)\right]$ using a riding model, with $\mathrm{C}-\mathrm{H}$ distances of 0.96 (methyl) or $0.97 \AA$ (methylene). The hydroxy H atom was refined isotropically with a fixed displacement parameter $\left[U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})\right]$.

Data collection: MSC/AFC Diffractometer Control Software (Rigaku/MSC \& Rigaku, 2001); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: CrystalStructure (Rigaku/MSC \& Rigaku, 2001); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Acknowledgement is made to Professor T. Hayashi and Dr K. Yofu of Kyoto University for use of the single-crystal X-ray diffractometer and valuable discussions.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GA3008). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bolte, M., Degen, A. \& Rühl, S. (1997). Acta Cryst. C53, 340-342.
Bolte, M., Degen, A. \& Rühl, S. (2001). Acta Cryst. C57, 446-451.
Bolte, M. \& Scholtyssik, M. (1997). Acta Cryst. C53, 1869-1871.
Cambridge Crystallographic Data Center (2006). Elemental Radii. URL: http://www.ccdc.cam.ac.uk/products/csd/radii/.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Desiraju, G. R. \& Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gompper, R., Euchner, H. \& Kast, H. (1964). Liebigs Ann. Chem. 675, 151174.

Kivekäs, R. \& Laitalainen, T. (1983). Acta Chem. Scand. Ser. B, 37, 6164.

Low, J. N., Cobo, J., Cruz, S., Quiroga, J. \& Glidewell, C. (2003). Acta Cryst. C59, o666-o668.
Rigaku/MSC \& Rigaku (2001). MSC/AFC Diffractometer Control Software and CrystalStructure (Version 3.10). Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Taylor, R. (1980). Acta Cryst. A36, 828-829.

